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Tracking the motion of lipid domains on a vesicle is a rheological technique
allowing the measurement of surface shear viscosities of vesicular lipid phases. The
ratio of surface to bulk viscosity defines a viscous length scale. Hydrodynamic
interactions split the motion of the domains into different modes of diffusion. The
measurability of surface shear viscosities from any mode of diffusion is limited to
viscous length scales between the radius of the domains and the radius of the vesicle.
The measurability of the surface shear viscosity results from the sensitivity of the
diffusion to surface shear viscosities and from sufficient spatial resolution to resolve the
diffusive motion. Switching between the various modes of diffusion is a trade between
sensitivity gained and resolution lost by the hydrodynamic interactions leaving the
measurability unchanged. Measurability drops with the number of domains making
single-domain rheology the best technique to measure surface shear viscosities.
Ultimately confinement of the domains to small vesicles renders measurements of
surface rheological properties with domain-tracking rheology impossible. Experiments
on domains in vesicles of a mixture of dioleoylphosphatidylcholine (DOPC),
dipalmytoylphosphatidylcholin (DPPC) and cholesterol (Chol) exhibit diffusion that is
entirely controlled by dissipation into the water. The diffusion is suppressed compared
to the diffusion of isolated domains in a flat membrane due to confinement to the
curved vesicle and by hydrodynamic interactions between the domains. Effects of
surface shear viscosity can be neglected.

1. Introduction
Diffusion is one of the basic passive means of irreversible transport used in the cell

as well as in membranes. In comparison to active forms of transport, diffusion does not
cost any energy. Without interaction between components, diffusion will ultimately
lead to thermal equilibrium with a complete mixture of the components. Along those
lines (Singer & Nicholson 1972) originally modelled biological membranes as an ideal
two-dimensional mixture of lipids and proteins that was initially described by the
fluid mosaic model. Later it has been realized that despite the tendency to mix, lipids
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interact. The interaction causes demixing into membrane domains (‘rafts’) (Simons &
Ikonen 1997; Brown & London 1998; Mukherjee & Maxfield 2000; Gaus et al. 2003;
Engelman 2005) consisting of a phase rich in cholesterol, certain types of lipids and
proteins, and a complementary phase containing the complementary composition
of the lipids. The mesoscopic structure which in part is caused by the enthalpy
of mixing of the components has triggered research towards understanding the
interactions of two-dimensional model mixtures. Experiments on monolayer mixtures
Radhakrishnan & McConnell (1999) and later on giant unilamellar vesicles (Korlach
et al. 1999; Bagatolli & Gratton 2000; Veatch & Keller 2002) has shown that especially
the mixtures of phospholipids and cholesterol can be understood as thermodynamic
equilibrium mixtures. Miscibility diagrams determined from the experiments could be
described with theories minimizing the Gibb’s free energy of the reactive mixture. The
long term stability of domains of different composition allows treating such domains
as entities with their own transport properties. Cicuta, Keller & Veatch (2007) showed
that such domains undergo diffusive motion. The dynamics of the domains are
governed by the viscous properties of the participating two- and three-dimensional
phases (Saffmann & Delbrück 1975; Hughes, Pailthorpe & White 1981) as well as by
their geometrical arrangement (Dimova et al. 1999a; Dimova, Dietrich & Pouligny
1999b; Danov, Dimova & Pouligny 2000; Fischer, Dhar & Heinig 2006). The work
of Saffmann & Delbrück (1975) originally derived for small solid and disk shaped
inclusions of proteins into a flat and highly viscous membrane has been subject of
both experimental tests (Peters & Cherry 1982; Klingler & McConnell 1993; Daniels
& Turner 2002; Naji, Levine& Pincus 2007; Sickert, Rondelez & Stone 2007) and
theoretical generalizations (Prasad, Koehler & Weeks 2006; Petrov & Schwille 2008).
The knowledge of rheological properties of complex membranes or monolayers is an
important experimental issue and one would like to understand how the addition of
cholesterol (Veatch & Keller 2003; Beattie et al. 2005; Veatch, Gawrisch & Keller
2006), synthetic fluorinated compounds (Riess 2002) and the presence of electrostatic
interactions (Heinig et al. 2002; Khattari et al. 2002; Fischer & Lösche 2004) alter
the membrane or monolayer viscous behaviour. The purpose of this work is to
generalize the theory of Saffmann & Delbrück (1975) for circular domains diffusing
on a vesicle. One of the important findings of Saffmann & Delbrück (1975) was
that the ratio of the membrane to the bulk viscosity defines a viscous length scale.
Therefore, the motion of objects moving in a membrane depends on how the size
of these objects compares to the viscous length scale. Diffusion of domains on a
vesicle differs from the calculations of Saffmann & Delbrück (1975) in four important
aspects. Firstly, the surface viscosity of the membrane embedding the domain in
general can be either low or high. A theory taking into account the full range of
possible surface shear viscosities of the embedding membrane has been first derived
by Hughes et al. (1981). Secondly, since the domains on the vesicle, like the embedding
membrane, are in general liquid not solid, the domain surface shear viscosity plays
an important role. De Koker (1996) was the first to derive a hydrodynamic equation
for a liquid domain diffusing in a flat membrane of the same surface shear viscosity.
Thirdly, the vesicle consists of a curved membrane and therefore has a finite size.
As a consequence of its finite size, the vesicle will perform rotational diffusion while
the domain is diffusing on its surface. The apparent motion of a domain observed
on the vesicle surface with microscopic techniques is hence a superposition of both
kinds of diffusive motions. When being interested in extracting rheological properties
of the vesicle membrane from the domain diffusion the rotational diffusion of the
vesicle in the water is disturbing. One might eliminate solid rotations of the vesicle
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by tracking the relative motion between several domains on the same vesicle, which
is independent of the rotation of the vesicle as a whole. However, such two-domain
rheology introduces the separation of the domains as a new length scale to the
problem, and our mathematical results presented in this manuscript results show
cross-over from uncorrelated to strongly correlated relative motion when this new
length scale becomes smaller than the viscous length scale. As a fourth complication,
the hydrodynamic correlations between the domains are different for different modes
of motion. Here we derive the hydrodynamic equations that govern such diffusion
for a single-liquid bilayer domain diffusing on a vesicle and for the combined and
the relative diffusion of two liquid bilayer domains. For the single-domain diffusion
we will show that there is a cross-over from surface viscous dominated diffusion
to a solid rotational diffusion of the entire vesicle when the size of the vesicle is
smaller than viscous length scale. For the two-domain rheology the same cross-
over manifests itself by a change from uncorrelated diffusion of the two domains
towards a correlated diffusion. This behaviour also occurs for two domains in a flat
membrane and the theory of two particle microrheology (Prasad et al. 2006) differs
from single-domain rheology for the case of a flat membrane. Our results provide
a theoretical tool to analyse recent (Cicuta et al. 2007) measurements of surface
shear viscosity of domains diffusing on curved membranes. We additionally apply the
theory to new measurements of the same system. The paper is organized as follows.
In § 2 we describe some general aspects of measuring diffusion on curved vesicles.
In § 3 we describe how to perform a single-domain rheology experiment. Section 4
describes the decomposition of the motion of two domains into four normal modes
of motion and the experimental extraction of the dimensionless diffusion coefficient.
Section 5 outlines the theory for the computation of the dimensionless diffusion
coefficient as a function of the geometrical details and as a function of the various
rheological properties of the participating fluids. Sections 6 and 7 present experimental
and numerical results for the single-domain and two-domain diffusion coefficients,
respectively. We compared both techniques and comment on their limitations.
Section 8 discusses our model in the context of our and others experimental findings
and § 9 gives a summary.

2. Experimental
We consider a set of i = 1 . . . n diffusing domains as liquid circular segments of

radii ai on a spherical vesicle of radius R (figure 1). A fluorescence microscope
image of such a vesicle is depicted in figure 1. It shows a vesicle of radius R =12 µm
of a mixture of dioleoylphosphatidylcholine (DOPC), dipalmytoylphosphatidylcholin
(DPPC) and cholesterol (Chol) of composition (DOPC/DPPC/Chol = 16/64/20) at
a temperature of T = 23◦C. The mixture decomposes into an Lα phase visible as
bright domains of average size a = 1–3 µm and into a L0 and a S0 phase (Veatch &
Keller 2003) that both appear dark and are not distinguishable in the fluorescence
image. DOPC, DPPC and Cholestrol were purchased from Avanti Polar Lipids.
Mixtures were fluorescently labelled with 1 %–3 % of 1,2-dihexadecanoyl-sn-glycero-
3-phosphoethanolamine, triethylammonium salt (Texas Red DHPE) which was
purchased from Molecular Probes (Eugene, Oregon USA). Giant unilamellar vesicles
were prepared using the electroformation method as described by Angelova et al.
(1992) and Veatch & Keller (2002). Lipids were dissolved in chloroform/methanol
9:1 at a concentration of 2 mg ml−1. A drop of 10 µl was deposited onto the conductive
side of an indium tin oxide (ITO) coated glass slide and dried using a nitrogen stream.
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Figure 1. (a) Fluorescence microscopy image of a vesicle of radius R = 12 µm, consisting of
a mixture of DOPC/DPPC/Chol of composition 16/64/20 that decomposes into an Lα phase
(bright domains), and into a L0 and a S0 phase that cannot be distinguished (continuous
dark region). The scale bar corresponds to a distance of 10 µm. The scope of this paper is
to describe the origin of diffusion of the domains in the vesicle. (b) Scheme of two lipid
domains (green) of radius a centred at position c1 and c2 and diffusing on a vesicle of radius
R. The domains have a conical domain angle of θ and γ is the separation angle. The force
profile normal to the edges (cyan arrows) of the domains arising from thermal fluctuations or
external forcing causes the domains diffusion. Shown are also the coordinates (ϑ, ϕ) defined
with respect to the z -axis and the second coordinate system (ϑγ , ϕγ ) defined with respect to
the c2-axis. The four possible modes of diffusion of the domains are depicted on the right. The
red line is the interconnecting geodesic between the domains and the black arrows indicate
the velocities of the domains. Longitudinal modes correspond to motion in direction of the
geodesic. Transversal modes correspond to motion perpendicular to the geodesic. Combined
motion is into the same direction while relative motion is into antiparallel directions. The
terms ‘parallel’ and ‘direction’ are used in the sense of the curved metric on the surface of the
vesicle not in the sense of three-dimensional Euclidian metric.

The sample was then put in vacuum for 1–3 h at 60◦C. A silicone spacer was deposited
around the dried lipids and 0.2 M sucrose solution in pure water (Millipore milli-Q
water) was added. By sealing the slide with another ITO Plate a capacitor was formed
and an AC field was applied for 2 h and 10 min at 60 ± 3◦C. For applying the AC
field two different schemes were used and both of them gave us nice vesicles. In the
first scheme, the voltage was increased from 0.2 to 2 V in 10 min and the swelling
time under the AC field was 100 min. Finally, the voltage is decreased from 2 to
0.2 V at a frequency of 1 Hz within 20 min to lay down the vesicles. In the second
scheme, the voltage was increased from 0.2 to 2 V at 10 Hz within 10 min then the
frequency was decreased to 1 Hz and kept there for 100 min. The lay down frequency
was 0.5 Hz instead of 1 Hz. The grown vesicles were stored at room temperature
(24◦C) in the dark until use. The best time for observation was between 1 and 12
h after electroformation. Vesicles were sucked out from the chambers and put on
the microscope glass slide, 20 µl glucose solution was added. A coverslip (0.17 mm)
was used with tape spacers (0.1 mm) to observe the samples and a fluorescence
microscope (LEICA DM 4000B) with a × 63 air objective was used for visualization.
The working distance of the objective was 0.31 mm which allowed to observe vesicles
floating at a distance of 140 µm from the cover slide. In order to avoid hydrodynamic
interactions with the upper cover slide and the lower glass slide we always worked with
vesicles spaced at least 2 diameters from both slides. The vesicles were investigated
at room temperature 23 ± 1◦C. Frames were captured with a camera (BASLER
A311fc) having 640 × 480 pixels at a resolution of 6 pixels µm−1 and a frame rate of
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27 frames s−1. The optical resolution was of the order of a micron. Typical recording
times of one particular vesicle were of the order of 15 s. The time limitation for the
recording was mainly caused by bleaching of the fluorecence dye and did not reach
the physical limit set by the rotational and translational diffusion of the entire vesicle.

The central position of each domain on the vesicle as a function of time can be
characterized by the vector ci = R(sinϑicosϕi, sinϑisinϕi, cosϑi), where ϑi(t) and ϕi(t)
are the polar and azimuth angle. In a domain diffusion experiment the raw data are
the time dependent vectors ci(t) pointing to the centres of the domains. The vertical
position z of the domain can be constructed from the lateral position assuming a
spherical shape of the vesicle.

A change in position of a domain on a vesicle is not necessarily due to translational
diffusion through the membrane. This can be easily seen by considering a vesicle with
very high viscosity of the bilayer. In a flat membrane an infinite membrane viscosity
would simply impede any translational diffusion. A vesicle however can perform
rotational diffusion in the same way a solid sphere reorients in a liquid. In the generic
case both types of motion are coupled. A decoupling of both types of motion can
be either performed experimentally by measuring the motion of a domain ‘relative’
to some reference domains. We will discuss the simplest form of measuring such
‘relative’ motion in § 4 dedicated to two-domain rheology. The other possibility is to
measure the absolute motion of a domain and derive a theoretical expression for the
total diffusion of the domain. In § 3 we follow the second approach.

There are two ways to look at the diffusion of a domain on the vesicle. One is to
watch the domain from three-dimensional space, the other is to consider the domain
moving in a two-dimensional curved space. If we consider the first point of view, we
would say that the domain is confined to the vesicle surface and the domain moves in
an erratic way on the surface around the centre of the vesicle. Thus the motion of the
domain is a rotational diffusion of the domain around the vesicle centre. According
to the second point of view the diffusion of the domain is an erratic ‘translational’
motion through a curved membrane. Both points of view have their advantages. The
advantage of the three-dimensional approach is that the three-dimensional space is
Euclidian, while the membrane surface is non-Euclidian. We will distinguish motions
described by the ‘non-Euclidian’ point of view from the Euclidian point of view by
marking it in quotes throughout the text. Euclidian rotational motion of the domain
is mathematically easier to describe than non Euclidian ‘translational’ motion. Let
us consider the Euclidian point of view: an infinitesimal change in domain position
during the time dt occurs due to an infinitesimal rotation dci = ωi ×ci dt of the
position, where ωi denotes the momentary angular frequency of rotation of the i th
domain around the vesicle centre. Hence the diffusion of the domain is characterized
by the rotational diffusion of the orientation of the vector ci on the vesicle surface in
the same sense as a director of a nematic liquid crystal performs rotational diffusion.
The three-dimensional rotational diffusion should not be confused with the two-
dimensional ‘rotational’ diffusion of the domain in the membrane which corresponds
to ‘rotations’ of a domain around the domain centre not to rotations of a domain
around the vesicle centre. In this work the term rotational diffusion will always
correspond to the rotation of the domain around the vesicle centre.

In general, the diffusion of the domains will depend on their geometrical
arrangement on the vesicle, described by the domain sizes and their polar and
azimuthal angles. Two arrangements of the domains will have the same diffusion
constants if the two arrangements can be mapped on top of each other by a solid
rotation. Instead of using individual coordinates of the domains, we might use three
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Figure 2. Time evolution of the polar and azimuthal angle of a domain of size a = 0.7 µm in
a vesicle of size R = 7.4 µm of composition (DOPC/DPPC/Chol= 40/40/20) at temperature
T = 23◦C.

Euler angles to describe the solid rotation of all domains on the vesicle and a set C
of conformational coordinates describing the relative conformation of the domains.
Using these conformational coordinates we may define the diffusion constant Dij (C) of
a specific conformation via the correlation function of the angular velocity fluctuations
of the domains following the general theory of Kubo (1957):

Dij (C) =

∫ ∞

0

dτ 〈ωi(t)ωj (t + τ )〉C, (2.1)

where

〈X〉C =

∫
dC′

∫
dtX(C′, t)δ(C − C′) (2.2)

denotes the ensemble and time average over all arrangements having the conformation
C. If there are more than one domain, the diffusion constant becomes a symmetric
tensor and a diagonalization yields the eigenvalues Dλ(C) of the different normal
modes of diffusion for the conformation C.

3. One-domain rheology: experiment
For the case of one single domain diffusing in a vesicle the only conformational

variable is the conserved size a = R cos θ of the domain. Here θ denotes the conical
opening angle of the domain on the vesicle (figure 1). Since all conformational
coordinates are invariants of the diffusive motion, there exists a description of
rotational diffusion that is analogous to the description of diffusion in flat systems in
terms of a mean square displacement. Using spherical coordinates the position of the
domain can be described by the polar and azimuthal angles (ϑ, ϕ) of the centre of
the domain. Figure 2 shows the time evolution of the domain position as a function
of time for a domain of size a = 0.7 µm in a vesicle of size R = 7.5 µm of composition
(DOPC/DPPC/Chol = 40/40/20) at temperature T = 23◦C. The diffusion of the
domain results in fluctuations of the polar and azimuthal angles.

The role of displacement is taken by the angular separation between the domain at
different times. The angular separation between the position on the sphere at time ti
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Figure 3. Plot of the experimental rotational correlation function C(�t) as computed from
the domain trajectory of figure 2 via (3.1) (symbols) together with a fit to a random walk
diffusion according to (3.2) (line graph). The inset shows the same data on a linear time scale.
The exponential decay is indistinguishable from a linear decay since the correlation time was
much shorter than the rotational diffusion constant.

and time tj is then given by the angle cos(γ (ti , tj )) = c(ti) · c(tj ) = cosϑ(ti) cosϑ(tj ) +
sin ϑ(ti) sinϑ(tj ) cos(ϕ(ti)−ϕ(tj )). We define the angular correlation function following
Berne & Precora (2000):

C(∆t) =

∑
i,j δ�t,tj −ti P2(cos(γ (ti , tj )))∑

i,j δ�t,tj −ti

, (3.1)

where δ�t,tj −ti denotes the Kronecker delta and �t is the time separation between ti
and tj and the sum is taken over all pairs of data taken at different times having
the same time separation. P2(cos γ ) = 3/2 cos2 γ − 1/2 is the Legendre polynomial
of degree 2. The definition of the angular correlation function in (3.1) is the same
as used for the director orientation in liquid crystals (Berne & Precora 2000). For a
random walk of the domain on a spherical surface, the rotational correlation function
exponentially decreases with the time lag �t as (Berne & Precora 2000)

C(�t) = e−6Drot�t , (3.2)

where Drot denotes the rotational diffusion constant of the domain. Hence a fit of the
angular correlation function equations (3.1) to (3.2) will yield the rotational diffusion
constant.

Figure 3 shows the angular correlation function C(�t) as computed from the
domain trajectory of figure 2 via (3.1) together with a fit to a random walk diffusion
according to (3.2). The fit describes the data well for smaller correlation times.
At large times the experimental data starts deviating since there is insufficient
statistics. Such decrease in statistics with the correlation time is inherent to all
experimental correlation functions. The fit corresponds to a rotational diffusion
constant of Drot = 5.0 × 10−3 s−1.

On short time scales the probability to diffuse away far from the original position
is low such that the domain will not sense the confinement imposed by the curved
surface of the vesicle. Hence in the limit �t → 0 also the angle γ vanishes (γ → 0)
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and we might expand (3.1) and (3.2) to obtain the connection of the three-dimensional
rotation diffusion constant with the apparent two-dimensional ‘translational’ diffusion
of the domain. We find

lim
∆t→0

P2(cos γ ) = 3/2 cos2 γ − 1/2 → 1 − 3/2γ 2 (3.3)

and

lim
∆t→0

e−6Drot�t → 1 − 6Drot�t. (3.4)

From (3.3) and (3.4) we conclude that in the tangent space (The tangent space is
the locally flat neighbourhood of the momentary domain position, where effects of
curvature can be still neglected.) to the vesicle the mean square displacement r2 grows
linearly with the time lag �t as

r2 = R2γ 2 = 4R2Drot�t = 4Dtrans�t for �t → 0. (3.5)

Equation (3.5) is the standard two-dimensional ‘translational’ diffusion law with the
apparent ‘translational’ diffusion constant Dtrans = R2Drot . The apparent ‘translational’
diffusion defined in this way contains both the ‘diffusion’ of the domain in the
membrane as well as the rigid rotational diffusion of the entire vesicle. For the
rotational correlation function fitted in figure 3 we obtain the corresponding apparent
‘translational’ diffusion constant as Dtrans =2.7 × 10−13 m2 s−1. The conical angle θ is
given by sin θ = a/R (see figure 1). It measures the size of the domain in units of the
size of the vesicle. Since the diffusion is due to thermal fluctuations then the rotational
diffusion constant Drot is related to the dimensionless friction coefficient f via the
fluctuation dissipation theorem (Reichl 1980):

ηoR
3 sin θ

kBT
Drot =

1

f
. (3.6)

For the rotational diffusion constant fitted in figure 3 we obtain f −1 = 4.2 × 10−2. The
dimensionless friction coefficient

f =
1

ηoR3 sin θ

τ

ω
(3.7)

is defined as the response in viscous torque τ of the domain when it is rotated
with angular frequency ω. The dimensionless friction coefficient f (θ, H, B, Hs) is
a function of four dimensionless parameters: the conic angle θ of the domain, the
relative bulk viscosity contrast H = (ηi − ηo)/ηo between the interior viscosity ηi and
the exterior bulk fluid viscosity ηo of the vesicle, the Boussinesq number

B = ηb
s /2ηoa (3.8)

and the contrast Hs =(ηa
s − ηb

s )/η
b
s between the domain shear viscosity ηa

s and the
surface shear viscosity ηb

s of the membrane embedding the domain. The dimensionless
friction coefficient can be computed by solving the Stokes equation of the coupled bulk
and membrane fluids. We will show in § 4 that a relatively simple analytic result exists
for the special case Hs = 0, where both bilayer phases have the same surface shear
viscosity ηs . Once the analytic expression for the dimensionless friction coefficient is
known, we can compare the dimensionless diffusion coefficient f −1 obtained from
the experiment via (3.6) with the theoretical expression and extract the Boussinesq
number B (and hence the surface shear viscosity ηs). As will be described in § 4 for
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Hs =0 we obtain

1

f
=

∞∑
n=1

P 1
n (cos θ)2

2π sin θn2(n + 1)2[1 +
n − 1

2n + 1
(H + 2(n + 2)B sin θ)]

, (3.9)

where P 1
n (cos θ) denotes the associated Legendre polynomial of the first kind of

degree n and order 1. The sum in (3.9) quickly converges if the conic angle of the
domain is large, and truncation of the sum at n= 100 gives results with errors less
than 5 % for θ > π/20. We may read off the value of the Boussinesq number from
a plot of (3.9) versus B by looking at which Boussinesq number B the theoretical
diffusion coefficient equation (3.9) coincides with the experimental diffusion coefficient
equation (3.6) f −1

theory (B) = f −1
experiment . The surface shear viscosity is then obtained via

(3.8).
We define the sensitivity of the rheological method as

S =
d ln f

d ln B . (3.10)

The sensitivity S expresses how much a relative change in viscosity �ηs/ηs will be
reflected in a relative change in diffusion constant �D/D. If the diffusion constant
does not change significantly with the surface shear viscosity, then one cannot measure
the surface shear viscosity to a high accuracy. This is indeed the case in single-domain
rheology at both low and high Boussinesq numbers. At low Boussinesq number the
diffusion of a single domain is dominated by the dissipation to the water and hence
fairly independent of the surface shear viscosity. The same is true for high surface
shear viscosity, where the vesicle performs rotational diffusion almost like a solid
sphere. Only in the cross-over regime 1 < B < 1/ sin θ does one achieve significant
sensitivity to allow a precise measurement of the surface shear viscosity.

We define the resolution limit of the method as Dres = �x2
min/R

2�tmax where �xmin

is the spatial resolution of the microscope and ∆tmax is the maximum time of the
measurement. The time limit for the measurement in one- and two-domain rheology
is set by the time the domain will stay in the focus of the microscope which is given by
�tmax =D−1

rot . We find that Dres = �x2
min/R

2Drot . Since the spatial resolution is smaller
than the vesicle size, �xmin <R also the rotational diffusion constant is above the
resolution limit Dres < Drot . We then define the resolution of a diffusion constant as

Res =
D

Dres

=
R2

�x2
min

D

Drot

. (3.11)

A high resolution corresponds to Res > 1. A diffusion constant cannot be resolved
when Res < 1. The resolution of single-domain rheology is Res = R2/�x2

min ≈
(20 µm/0.5 µm)2 ≈ 103. In order to detect the surface shear viscosity one needs
both sensitivity and resolution. We define the measurability by

M = Res × S. (3.12)

The higher the measurability the easier it is to obtain a value for the surface shear
viscosity.

4. Two-domain rheology: experiment
One-domain rheology has the disadvantage to be sensitive to the surface shear

viscosity of the vesicle membrane only in the cross-over region 1< B < 1/ sin θ since
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at higher Boussinesq numbers the apparent diffusion of the domain is mainly due
to rotations of the entire vesicle. These rotations dissipate the vesicle energy by
shearing the surrounding bulk liquid not the membrane. One might eliminate the solid
rotation by measuring the relative motion of two or more domains on the vesicle.
Such measurements are indeed possible and two-particle microrheology has been
used successfully with colloidal particles. The mathematics of two-particle rheology
(Prasad et al. 2006), however, significantly differs from the results for one particle even
when the system is flat rather than curved. Hydrodynamic interactions between two
domains lead to correlated motion of the domains. Their relative motion is generally
not the result of an independent motion of the single domains. Differences in the
motion arising from hydrodynamic correlations (Levine & MacKintosh 2002; Fischer
2003) compared to an uncorrelated motion are especially large at large Boussinesq
numbers B > γ/2θ where γ denotes the angular separation of the two domains.
Under these circumstances, hydrodynamic correlations are mediated by long range
interfacial hydrodynamic interactions. Each domain has two degrees of freedom to
move in the membrane giving rise to four normal modes of diffusion. For equally
sized domains a1 = a2 symmetry considerations let us recognize those normal modes
as the combined and relative motion of both domains along and perpendicular to
the geodesics connecting both domains (figure 1). In § 4 we will derive equations
connecting the Brownian angular velocity of all four modes with the corresponding
Brownian torques at the domain edges. Numerical solution of the equations yields
the combined and relative diffusion coefficients f −1

comb,‖, f
−1
rel,‖, f

−1
comb,⊥ and f −1

rel,⊥ parallel

and perpendicular to the geodesic connecting the domain centres of the two domains.
Diffusion of both domains will result in a change in separation γ . Since all four
diffusion coefficients depend on the separation γ , a linear relation between the mean
square displacement and time (γ 2 ∝ �t) will no longer hold over times allowing
for significant change in γ . In a two-domain rheology experiment, the experimental
data will be the vectors c1(t) and c2(t) describing the position of the two domains on
the vesicle. We define the vector c3(t) as c3(t) = Rc1 × c2/|c1 × c2| . The vectors c1(t),
c2(t) and c3(t) define a basis for the three-dimensional space. The momentary angular
velocities of both domains are

ω1 =
1

R2
c1 × dc1

dt
and ω2 =

1

R2
c2 × dc2

dt
. (4.1)

We introduce a reciprocal basis as

q i =
1

2
εijk

cj × ck

|(c1 × c2) · c3| , (4.2)

where εijk denotes the Levi-Civita symbol. The vectors c1, q2 and q3 are orthogonal
to each other and the vectors q2 and q3 span the tangent space to the domain located
at the position c1. The same is true for the vectors c2, q3 and q1. The reciprocal
vectors q3 and q1 span the tangent space to the domain located at the position c2.
We decompose the angular velocities of both domains into combined and relative
angular velocities parallel and perpendicular to the interconnecting geodesics between
both domains via

ω1 =
ωcomb,‖ + ωrel,‖√

2

q3

|q3| +
ωcomb,⊥ + ωrel,⊥√

2

q2

|q2| ,

ω2 =
ωcomb,‖ − ωrel,‖√

2

q3

|q3| − ωcomb,⊥ − ωrel,⊥√
2

q1

|q1| .

⎫⎪⎬
⎪⎭ (4.3)
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Note that there is no component of ω1 along c1 and no component of ω2 along c2.
This is because a ‘rotation’ of domain 1 around c1 leaves both the position and the
shape of the domain unchanged and cannot be detected by the microscope. Note
also that the rotations perpendicular to the connecting geodesic are around different
axes (q2 and q1) for domains 1 and 2. It is straightforward to resolve (4.3) for the
combined and relative angular velocities ωcomb,‖, ωrel,‖, ωcomb,⊥ and ωrel,⊥ as

ωcomb,‖ =
|q3|√

2
(ω1 + ω2) · c3,

ωrel,‖ =
|q3|√

2
(ω1 − ω2) · c3,

ωcomb,⊥ =
ω1 · c2|q2| − ω2 · c1|q1|√

2
,

ωrel,⊥ =
ω1 · c2|q2| + ω2 · c1|q1|√

2
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.4)

From (4.3) and (4.4) we obtain the relative velocity u1,rel and u2,rel between both
domains at the position of domains 1 and 2:

u1,rel =
√

2ωrel,‖
c1 × q3

|q3| +
√

2ωrel,⊥
c1 × q2

|q2| ,

u2,rel = −
√

2ωrel,‖
c2 × q3

|q3| −
√

2ωrel,⊥
c2 × q1

|q1| ,

⎫⎪⎪⎬
⎪⎪⎭ (4.5)

where u1,rel and u2,rel are ‘relative’ velocities in the sense of a two-dimensional non-
Euclidian geometry on the vesicle surface. They are different from the Euclidian
three-dimensional relative velocity dc1/dt − dc2/dt that usually will not be tangential
to the sphere. The ‘relative’ velocity u1,rel is obtained in the following way. First,
‘parallel’ transport (Misner, Thorne & Wheeler 1973) of the velocity dc2/dt from
the position of domain 2 towards the domain 1 along the interconnecting geodesic
will result in a velocity ũ2. This allows mapping of the velocity dc2/dt of domain 2
defined in the tangent space of domain 2 into the tangent space of domain 1. In curved
space such ‘parallel’ transport is necessary since vectors can be compared only when
residing in the same tangent space. Only after this ‘parallel’ transport is achieved can
the velocity ũ2 be subtracted from the velocity dc1/dt of domain 1 to yield the ‘relative’
velocity dc1/dt − ũ2 evaluated in the tangent space of domain 1. Measurements of
‘relative’ velocities in curved space are usually quite difficult. We have taken advantage
of the fact that the curved surface of the vesicle is embedded into a Euclidian three-
dimensional space which made the computation of the ‘relative’ velocities in (4.5)
much simpler than when performing the same operation in an arbitrarily curved
space. ‘Parallel’ transport is just a rotation around the vector c3 by the angle γ . The
difference between relative velocity in three-dimensional space and ‘relative’ velocity
on a curved surface can be most easily understood when considering two domains,
one sitting at the north pole and the other sitting at the south pole. Assume that both
domains start moving ‘towards’ each other along the same longitude with the same
velocities (dc1/dt = dc2/dt). The difference in velocities in three-dimensional space
is zero. It makes sense in a two-dimensional curved space to speak of a ‘relative’
motion ‘towards’ each other and to measure a ‘relative’ velocity that will be just
(dc1/dt +dc2/dt) not (dc1/dt −dc2/dt) . The plus sign instead of the minus sign arises
because ‘parallel’ transport (a three-dimensional rotation of π in the three-dimensional
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Figure 4. Plot of the relative longitudinal angular frequency ωrel,‖(t) versus time of two
domains with sizes a1 = 1.3 µm ≈ a2 = 1.0 µm separated by an angle of γ = 30◦ and residing in
a vesicle of size R =12.5 µm and composition (DOPC/DPPC/Chol= 16/64/20) at temperature
T = 23◦C.

Euclidian sense) of the velocity of the domain at the south pole ‘towards’ the north
pole just reverses the sign of the velocity.

Experimental measurements using two-domain rheology must average the angular
velocity correlations

Dλ =

∫ ∞

0

d�t〈ωλ(γ, t)ωλ(γ, t + �t)〉 (4.6)

for each separation γ and each mode λ = (comb, ‖), (rel, ‖), (comb, ⊥) and (rel, ⊥)
individually. Since the diffusion of each mode is due to thermal fluctuations the
diffusion constants Dλ are related to the corresponding friction coefficients via the
fluctuation dissipation theorem:

ηoR
3 sin θ

kBT
Dλ =

1

fλ

, (4.7)

where the friction coefficients describe the response in the viscous torque τλ,

fλ =
1

ηoR3 sin θ

τλ

ωλ

, (4.8)

arising due to a rotation of both domains with frequency ω1(λ) and ω2(λ) and where
the viscous torque has been decomposed into normal modes in a way analogous to
the decomposition of frequencies equation (4.3). The normalization factors in (4.3)
ensures that the power dissipated by the relative motion of both domains is

〈τλ(γ, t)ωλ(γ, t ′)〉 = kBT δ(t − t ′). (4.9)

In figure 4 we depict the behaviour of the relative longitudinal angular frequency
ωrel,‖(t) of two domains with sizes a1 = 1.3 µm ≈ a2 = 1.0 µm separated by an angle
of γ = 30◦ and residing in a vesicle of size R = 12.5 µm consisting of composition
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Figure 5. Plot of the auto correlation function 〈ωrel,‖(γ, t)ωrel,‖(γ, t + �t)〉 computed from

the data in figure 4. The diffusion constant Drel,‖ = 1 × 10−3 s−1 corresponds to half the area
under the auto correlation function. The region of the peak of the autocorrelation function at
�t ≈ 0 that contributes to the diffusion is depicted with higher resolution in the inset.

(DOPC/DPPC/Chol = 16/64/20) at temperature T =23◦C. The relative longitudinal
angular frequency fluctuates around zero and does not change the separation γ by a
significant amount during the time of measurement. The autocorrelation function
〈ωrel,‖(γ, t)ωrel,‖(γ, t + �t)〉 is depicted in figure 5. The diffusion constant Drel,‖
corresponds to half the area under the correlation function. Like the angular
frequency, torque correlation in (4.9), also the angular frequency autocorrelation
function, is delta correlated. The fluctuations persisting in figure 5 are due to the
limited time of measurement and the integration in (4.6) is therefore taken over a
time span of three frames, e.g. larger than the correlation time but smaller than the
time of measurement.

Only the relative longitudinal motion of the domains results in a motion where
the vesicle as a whole is at rest. Transversal relative motion results in a net rotation
of the vesicle around the midpoint between both domains. Separation of relative
and global motion of the vesicle therefore remains incomplete also for two-domain
rheology. On a curved surface, combined motion into one direction means that the
direction of the first domain is the same as the second after that the second direction
is parallel transported (Misner et al. 1973) along the interconnecting geodesics to the
first domain. The combined motion of both domains is the analogue of one domain
rheology with two domains. The analysis of the two-domain rheology consists of
the decomposition of the motion into the four modes and a measurement of the
autocorrelation function of the angular velocity fluctuations of a particular mode,
(4.6) at a fixed separation of domains. The diffusion constant of the particular mode
is obtained from the ensemble and time average over these fluctuations. Again a
comparison between the theoretical diffusion coefficients f −1

λ (θ, γ, B) and the four
different experimental diffusion constants determined from (4.7) allows extraction
of the Boussinesq number and using (3.8), the surface shear viscosity. As described
in § 4 for Hs = 0 and γ = π two of the four modes become degenerate and we
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obtain:

1

frel,‖
=

1

fcomb,⊥
= 2

∞∑
n=2,4,6...

P 1
n (cos θ)2

2π sin θn2(n + 1)2[1 +
n − 1

2n + 1
(H + 2(n + 2)B sin θ)]

,

1

frel,⊥
=

1

fcomb,‖
= 2

∞∑
n=1,3,5...

P 1
n (cos θ)2

2π sin θn2(n + 1)2[1 +
n − 1

2n + 1
(H + 2(n + 2)B sin θ)]

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.10)

The sum for the two domains in (4.10) differs from the corresponding equation (3.9)
of a single domain in several aspects. The summation in (4.10) is only over odd (even)
values of n. The summation quickly converges if the conic angle of both domains and
the separation angle 2(π/2 − θ) are large. Moreover truncation of the sum at n= 100
gives results with errors less than 5 % for θ > π/20 and 2(π/2 − θ) > π/20. We may
estimate the value of the Boussinesq number from a plot of (4.10) versus B by looking
where the theoretical diffusion coefficient of (4.10) equals the experimental diffusion
coefficient determined from (4.7). The surface shear viscosity is then obtained via
(3.8). The advantage of two-domain rheology with respect to one-domain rheology
is that in some of the modes one gains sensitivity for the surface shear viscosity.
One disadvantage is that such technique requires to statistically average the angular
velocity correlations for a subset of events, where the domains have similar separation.
Moreover, at high surface shear viscosity the rotational diffusion of the vesicle in the
water is much faster than the relative diffusion of two domains. The time to observe
these domains with high spatial resolution is limited by �tmax ≈ D−1

rot since for longer
times both domains, which are originally located on the northern hemisphere of the
vesicle, will diffuse to the southern hemisphere via the rotational diffusion of the entire
vesicle and therefore be out of the focal plane of the objective. For large Boussinesq
numbers, relative diffusion Drel will eventually drop below the diffusion resolution
limit Drel <Dres . In two-domain rheology one will gain the missing sensitivity at high
Boussinesq numbers using the relative longitudinal mode but will lose resolution in
the measurement of the relative diffusion constants as compared to the high resolution
of measuring rotational diffusion constants with single-domain rheology.

5. Theoretical
In this section we outline the derivation of the single-domain diffusion constant

equation (3.9) and the two-domain diffusion constants equation (4.10). The bulk liquid
inside and outside the vesicle fulfills the Stokes equation:

−∇p + η�u = 0,

∇ · u = 0.

}
(5.1)

Here u is the bulk fluid velocity. The dynamic bulk (P) and surface (Ps) stress tensors
are given by

P = −p1 + η
(
∇u + [∇u]t

)
,

Ps = σs I s + ηs

(
∇sus · I s + I s · [∇sus]

t
)
,

}
(5.2)

where p is the bulk pressure, η is the bulk viscosity, σs is the surface tension and ηs

is the surface shear viscosity. The index s is used for quantities defined at the vesicle



Diffusion of domains on a vesicle 431

surface. They are obtained from the corresponding bulk quantities by projection onto
the tangent space of the vesicle using the surface idem factor I s = 1 − nn, where n is
the normal vector to the vesicle surface (i.e. us = I s · u, ∇s = I s · ∇). To compute the
resistance of the domain to the action of an external force we assume an external
surface force density f s distributed around the edge of the domain (figure 1). The
vesicle surface is assumed incompressible and the divergence of the dynamic surface
tension tensor is balanced by the traction n · ‖P‖ · I s from the two bulk liquids and
by the surface force density:

n · ‖P‖ · I s = f s + ∇s · Ps,

∇s · us = 0.

}
(5.3)

Here ‖P‖ denotes the discontinuity of the bulk stress tensor across the vesicle interface.
In general, the vesicle interior might have different properties than the exterior and
we denote the velocities inside and outside the vesicle by ui and uo. ηi and ηo are the
bulk viscosities inside and outside the vesicle. In general, we also will have two surface
viscosities, one for the domain ηa

s and one ηb
s for the rest of the membrane. We have so

far discussed the rheological properties of the bulk fluid and the membrane. Of course
there are also the rheological properties of the one-dimensional boundary between
the portion of the membrane within the domain and the rest of the membrane.
A one-dimensional line cannot be sheared and there is no analogue to the shear
viscosities of the membrane and the bulk on the domain edge. However, the presence
or absence of linactants (Trabelsi et al. 2006) (molecules that preferentially adsorb to
the domain edge) will have a pronounced effect on the line compressibility and the
line dilatational viscosity of the edge. The general line stress tensor would hence read

Pl = (σl + ηdil
l ∇l · ul)I l (5.4)

with σl the line tension, ηdil
l the line dilatational viscosity, I l the line idem factor, ∇l

the line gradient and ul the line velocity. The Stokes equation for the line edge then
reads

nl · ‖Ps‖ · I l = ∇l · P l , (5.5)

where ‖Ps‖ denotes the discontinuity of the surface stress tensor across the edge of
the domain. The equation of continuity reads

∇l · (ρlul) = 0 (5.6)

with ρl the linactant line density at the domain edge. A closure of the equations
requires a constitutive equation for the line tension σl(ρl) . Little is known about the
presence or absence of linactants, and even less is known about their compressibility
and dilatational viscosity. Fluorescently labelled molecules sometimes act as linactants.
Here we will assume a free domain edge without linactants ρl = 0 and ηdil

l =0 such
that ∇lσl =0 . For a free domain edge all rheological properties of the domain edge
vanish and we find that all domain edge forces parallel to the domain edge vanish.
We will hence assume that the surface force f s in (5.3) is concentrated at the domain
edge and pointing normal to the domain edge.

We will solve the problem in several steps. Firstly, we reduce the vector equations to
scalar equations. In the second step, the relations between the torque and the velocities
are reduced to equations solely involving velocities and torques on the vesicle surface.
The third step reduces the relations to the velocity and torque fields on the domain
edges. The equations on the domain edge are one-dimensional and can therefore be
solved in a straightforward way.
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We impose spherical coordinates r , ϑ and ϕ centred in the vesicle with the
corresponding unit vectors er , eϑ and eϕ . R is the radius of the vesicle.

The general solution of the bulk Stokes equation (5.1) can be written as

u = η

∫
d3r ′ ∇p(r ′)

r − r ′ + ∇Ξ + (∇ × r)Ψ, (5.7)

where p, Ξ and Ψ are scalar functions satisfying the Laplace equation
∇2p = ∇2Ξ = ∇2Ψ = 0. Due to the incompressibility of the bulk velocity and the
surface velocity on the vesicle, the flow can be described by the function Ψ only
and p = Ξ =0. It has been shown in the work of Saffmann & Delbrück (1975) that
the incompressibility of the bulk and interfacial liquids causes all streamlines to be
parallel to the interface and leads to a flow that is free of pressure gradients. This
fact also holds when the interface is spherical and we therefore neglect the pressure
gradients from the very beginning Fischer et al. (2006). The tangential stress-boundary
condition (5.3) takes the form Edwards, Brenner & Wasan (1991):

−rηo

∂uo/r

∂r
+ rηi

∂ui/r

∂r

)
s

= f s + ∇sσs + ηs

{
er × ∇s [(∇s × us) · er ] − 2

R2
us

}
. (5.8)

Using (5.7) and scalar multiplying (5.8) with r × ∇ results in

−∇ · τ s = Λ̂sΨ, (5.9)

where

τ s = r × f s (5.10)

denotes the surface torque density acting on the surface of the vesicle and Λ̂s is the
surface rheological operator:

Λ̂sΨ =

∥∥∥∥r
∂

∂r
r∇2

s ηΨ

∥∥∥∥
r=R

+ ηs(ϑ, ϕ)R2∇2
s

(
∇2

s +
2

R2

)
Ψ. (5.11)

If we set the surface shear viscosity to be constant η̄s = (ηa
s + ηb

s )/2 over the entire

vesicle membrane, the surface rheological operator
¯̂
Λs = Λ̂s(η = η̄) commutes with the

operator ∇ × r and with the surface Laplace operator ∇2
s = (1/r2)(∇ × r)2 . It therefore

follows that the functions

Ψ e
nm =

⎧⎪⎪⎨
⎪⎪⎩

ωR
( r

R

)n

cos(mϕ)P m
n (cosϑ) for r < R,

ωR

(
R

r

)n+1

cos(mϕ)P m
n (cosϑ) for r > R,

Ψ o
nm =

⎧⎪⎪⎨
⎪⎪⎩

ωR
( r

R

)n

sin(mϕ)P m
n (cos ϑ) for r < R,

ωR

(
R

r

)n+1

sin(mϕ)P m
n (cosϑ) for r > R,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.12)

are simultaneous eigenfunctions of the three operators
¯̂
Λs , ∇ × r and ∇2

s . We will
only solve problems that are mirror symmetric with respect to the operation ϕ → −ϕ

and hence the solution will involve only the even functions Ψ e
nm or only the odd

functions Ψ o
nm. We describe the solution for the even functions and will omit the index

e in Ψ e
nm, wherever the equation holds in the same way for the odd solutions. The
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functions P m
n (cos ϑ) are associated Legendre polynomials. The eigenvalue equation

for the operator
¯̂
Λs on the vesicle surface reads

¯̂
ΛsΨnm = λnΨnm (5.13)

with

λn = ηoR
−1n(n + 1)

[
2n + 1 + (n − 1) {H + 2(n + 2)(1 + Hs/2)B sin θ}

]
. (5.14)

In the case that the membrane surface shear viscosity differs inside and outside the
domain we write the surface shear viscosity as

ηs = 2ηoRB sin θ [1 + Hs/2(1 + χ(ϑ, ϕ))] , (5.15)

where the function χ(ϑ, ϕ) is equal to ±1 depending on whether (ϑ, ϕ) is a point
inside or outside the domains:

χ =

{
+1 for ϑ, ϕ ∈ domains,
−1 for ϑ, ϕ �∈ domains.

(5.16)

We write the surface rheological operator as Λ̂s =
¯̂
Λs+χ(ϑ, ϕ)δΛ̂s . While the operators

¯̂
Λs and δΛ̂s commute with ∇ × r and ∇2

s , the operator Λ̂s does not commute with
∇ × r and ∇2

s . We define the scalar product

〈f, g〉 =

∫
R2 sin ϑdϑdϕf ∗(ϑ, ϕ)g(ϑ, ϕ). (5.17)

With the scalar product equation (5.17) the functions Ψnm are orthogonal and one has

〈Ψñm̃, Ψnm〉 = Nñm̃δñnδm̃m (5.18)

with normalization constant

Nñm̃ = ω2R4 2π

2ñ + 1

ñ + m̃!

ñ − m̃!
for m̃ �= 0. (5.19)

Taking the scalar product of Ψñm̃ with (5.9) results in

−〈Ψñm̃, ∇s · τ s〉 = 〈Ψñm̃, Λ̂sΨ 〉 =
∑
nm

〈Ψñm̃, [
¯̂
Λs + χδΛ̂s]Ψnm〉 1

Nnm

〈Ψnm, Ψ 〉

=
∑
nm

λñ∆ñm̃,nm〈Ψnm, Ψ 〉, (5.20)

where

∆ñm̃,nm =

{
δñnδm̃m + 〈Ψñm̃,

χδΛ̂s

λñNñm̃

Ψnm〉
}

=

{
δñnδm̃m +

δλn

λñ

〈Ψñm̃, χ(ϑ, ϕ)Ψnm〉
Nñm̃

}
(5.21)

and

δλn = ηoR
−1(n − 1)n(n + 1)(n + 2)HsB sin θ. (5.22)

Inverting (5.20) results in

〈Ψnm, Ψ 〉 = −
∑
ñm̃

(∆−1)nm,ñm̃

〈Ψñm̃, ∇s · τ s〉
λñ

. (5.23)
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For a given torque density τ s on the vesiclewe find the corresponding velocity profile as

u =
∑
nm

(∇ × r)Ψnm

〈Ψnm, Ψ 〉
Nñm̃

= −
∑

nm,ñm̃

(∇ × r)Ψnm(∆−1)nm,ñm̃

〈Ψñm̃, ∇s · τ s〉
λñNñm̃

. (5.24)

We retain our freedom to place our domains of conical angle θ at an arbitrary
latitude γ . It is therefore convenient to use an alternative system of spherical
coordinates (ϑγ , ϕγ ) with its pole centred in the domain at latitude γ . The
transformation from coordinates (ϑ, ϕ) to (ϑγ , ϕγ ) is then achieved via

ϑ = arccos(cos γ cosϑγ − sin γ sin ϑγ cos ϕγ ),

ϕ = arctan
sinϕγ

cos γ cos ϕγ + sin γ cotϑγ

.

⎫⎬
⎭ (5.25)

The edge of the domain at latitude γ is then given by the equation ϑγ = θ . It is useful
to define a second scalar product on the edge of the domain via

{f, g}γ,θ =

∫ π

−π

dϕγ

π
f ∗(ϑ(ϑγ = θ, ϕγ ), ϕ(ϑγ = θ, ϕγ ))g(ϑ(ϑγ = θ, ϕγ ), ϕ(ϑγ = θ, ϕγ )),

(5.26)

where the integral

{cos(νφγ ), Ψ e
nm}

γ,θ
=

∫ π

−π

dϕγ

π
cos(νφγ )Ψ e

nm(ϑ(ϑγ = θ, ϕγ ), ϕ(ϑγ = θ, ϕγ )) (5.27)

denotes the Fourier cosine transform of the even eigenfunction Ψ e
nm on the edge of

the domain at latitude γ . Similarly, we find the Fourier coefficients of the normal
velocity to the domain edge at latitude γ as

ǔϑγ ,ν[γ, θ] = {sin(νϕγ ), eϑγ
· (∇ × r)Ψ }γ,θ = −{eϑγ

· (∇ × r) sin(νϕγ ), Ψ }γ,θ

=
−ν

sinθ
{cos(νϕγ ), Ψ }γ,θ = −

∑
nm

ν{cos(νϕγ ), Ψ e
nm}γ,θ

〈Ψ e
nmΨ 〉

Nnm sin θ
,

=
∑
nm

ν{cos(νϕγ ), Ψ e
nm}γ,θ (∆

−1)nm,ñm̃

〈Ψ e
ñm̃∇s · τ s〉

λñNnm sin θ
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(5.28)

We anticipate a surface torque density parallel to the edge of a second domain at the
same longitude but different latitude γ̃ as

τ e
s[γ̃ , θ] =

δ(ϑγ̃ − θ)eϕγ̃

πR2 sin θ

∞∑
µ=1

τ̌µ[γ̃ , θ] sin(µϕγ̃ ), (5.29)

where the pre-factor is chosen such that the total torque on the second domain

|τ tot | =

∣∣∣∣
∫

R2sinϑγ̃ dϑγ̃ dϕγ̃ τ e
s[γ̃ , θ]

∣∣∣∣ = |τ̌1[γ̃ , θ]| (5.30)

is given by the first Fourier coefficient τ̌1[γ̃ , θ] of the second domain. We obtain

〈Ψ e
ñm̃, ∇s · τ e

s[γ̃ , θ]〉 =

∫
R2 sinϑγ̃ dϑγ̃ dϕγ̃ Ψ e∗

ñm̃

eϕγ̃

R sin θ
· ∂τ e

s[γ̃ , θ]

∂ϕγ̃

=

∫
dϕγ̃ Ψ e∗

ñm̃

∞∑
µ=1

µ

πR sin θ
τ̌µ[γ̃ , θ] cos(µϕγ̃ ),

=
1

R sin θ

∞∑
µ=1

µτ̌µ[γ̃ , θ]{Ψ e
ñm̃, cos(µϕγ̃ )}γ̃ ,θ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.31)
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Inserting (5.31) in (5.28) we find

ǔϑγ ,ν[γ, θ] =
∑

µ

Oνµ[γ, θ; γ̃ , θ]τ̌µ[γ̃ , θ], (5.32)

where

Oνµ[γ, θ; γ̃ , θ] =
∑

nm,ñm̃

νµ{cos(νϕγ ), Ψ e
nm}γ,θ (∆

−1)nm,ñm̃{Ψ e
ñm̃, cos(µϕγ̃ )}γ̃ ,θ

R sin2 θλñNnm

. (5.33)

The domain edge Oseen tensor Oνµ[γ, θ; γ̃ , θ] measures the response in the Fourier
component of the normal velocity ǔϑγ ,ν[γ, θ] on the edge of the domain centred at
latitude γ to the Fourier component of the torque τ̌µ[γ̃ , θ] on a different domain
centred at latitude γ̃ . Note that (5.32) requires the knowledge of the normal velocity
field and torque density only at the edges of the domains. The normal velocities
however are fixed via the specific mode of motion of the domains.

The computation of the single- and two-domain friction coefficients is now
straightforward. We proceed with the computation of the single-domain friction
first. Without loss of generality we may place the single domain at the north pole
γ = 0. For this case the coordinates systems (ϑ, ϕ) and (ϑγ , ϕγ ) coincide. We find

{cos(νϕγ ), Ψnm}γ=0,θ = ωRδnmP m
n (cos θ) (5.34)

and

(∆)ñm̃,nm = δm̃m∆m,ñn (5.35)

with

∆m,ñn =

{
δñn − δλn

λñ

πω2R4
∫ 1

−1
dx sign(x − cos θ)P m

ñ (x)P m
n (x)

Nnm

}
. (5.36)

The Oseen tensor becomes diagonal in ν and µ. We require the domain to rotate with
velocity u = ωey × r such that ǔϑ,1 = ωR and ǔϑ,ν = 0 for ν = 2, 3, . . . . This requires a
torque τ̌1 = ωR/O11, and τ̌ν = 0 for ν = 2, 3, . . . . , with

O11[0, θ; 0, θ] =
∑
n,ñ

ω2RP 1
n (cos θ)(∆1

−1)n,ñP
1
ñ (cos θ)

sin2 θλñNn1

. (5.37)

For the case Hs =0 the inversion of ∆ is trivial and we regain (3.9) by noting that

1

f
= ηoR

3 sin θ
ω

|τ̌1| = ηoR
2 sin θO11[0, θ; 0, θ], (5.38)

B =
ηs

2ηoR sin θ
=

ηs

2ηoa
(5.39)

is the Boussinesq number defined with the domain radius a. In the limit B → ∞ all
terms except for n= 1 vanish in (5.37) and using (5.38) we find

1

f
(B → ∞) = sin θ/8π, (5.40)

which is the result for a rigid rotating sphere (Russel, Saville & Schowalter 1989) on
the other hand small angles θ the sum in (5.37) converges only after summing over
large numbers n. We may convert the sum into an integral and we might use the
relation

lim
n→∞

n−mP m
n (cos ϑ) = Jm(nϑ), (5.41)
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where Jm(nϑ) is a Bessel function of order m. With these manipulations we rediscover
the equation of De Koker (1996) for a flat membrane:

1

f
(B, θ → 0) =

1

2π

∫ ∞

0

dx
J1(x)2

x2(1 + Bx)

B → 0
=

1

2

4

3π2
. (5.42)

Noting that the drag force is Fdrag = τ̌1/R and the domain velocity is UDomain = Rω

in a flat surface equation (5.42) predicts half of the result of De Koker (1996) for
a flat monolayer domain having the same surface shear viscosity as the rest of the
membrane. The factor 1/2 arises because we have a bilayer with water on both sides
of the membrane. The theory of Hughes et al. (1981) for a rigid domain would be
obtained for the case where one first performs the limit θ → 0 and afterwards the
limit towards a solid domain Hs → ∞. The numerical inversion of the matrix ∆ in
(5.37) involves matrix elements with higher indices n and m that makes the evaluation
more difficult the smaller the conical angle θ of the domain.

For the computation of the relative two-domain diffusion coefficient we consider the
first domain to sit at the north pole and the second to sit at latitude γ . The latitude
γ of the second domain must be larger than twice the conical angle of the domains
2θ <γ < π for the domains not to overlap. For a relative motion of the domains
we require the torques on one domain to be the inversion at the midpoint between
both domains of the torque on the other domain: τϕ0

[0, θ](ϕ0) = τϕγ
[γ, θ](ϕγ = ϕ0 +π)

which translates into

τ̌µ[0, θ] = (−1)µτ̌µ[γ, θ]. (5.43)

For a combined motion one finds τ̌µ[0, θ] = (−1)µ+1τ̌µ[γ, θ]. Here, we will derive the
Oseen tensor for the relative motion. The velocity of the domain on the north pole
occurs due to the torques from both domains and we find

ǔϑ,ν[0, θ] =
∑

µ

(
Oνµ[0, θ; 0, θ] + (−1)µOνµ[0, θ; γ, θ]

)
τ̌µ[0, θ] =

∑
µ

Otot
νµ τ̌µ[0, θ],

(5.44)

where

Oe,tot
νµ =

∑
n,ñm̃

νµωP ν
n (cos θ)(∆−1)nν,ñm̃[ωRP

µ
ñ (cos θ)δm̃µ + (−1)µ{Ψ e

ñm̃, cos(µϕγ )}]
sin2 θλñNnν

.

(5.45)

The Oseen tensor for the odd solution is obtained by replacing {Ψ e
ñm̃, cos(µϕγ )} with

{Ψ o
ñm̃, sin(µϕγ )} in (5.45):

Oo,tot
νµ =

∑
n,ñm̃

νµωP ν
n (cos θ)(∆−1)nν,ñm̃[ωRP

µ
ñ (cos θ)δm̃µ + (−1)µ{Ψ o

ñm̃, sin(µϕγ )}]
sin2 θλñNnν

.

(5.46)

The Oseen tensor for the combined motion of two domains is obtained by replacing
the factor (−1)µ by (−1)µ+1 in (5.45) and (5.46). If the contrast between the domain
and embedding membrane surface shear viscosity vanishes equation simplifies to

Oe,tot
νµ =

∑
n

νµωP ν
n (cos θ)[ωRP µ

n (cos θ)δνµ + (−1)µ{Ψ e
nν, cos(µϕγ )}]

sin2 θλnNnν

. (5.47)
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For the special case that the second domain sits at the south pole γ = π we find
ϑ = π − ϑπ and ϕ = π − ϕπ. Therefore

{cos(µϕπ), Ψ
e
nµ}γ=π,θ = (−1)µωRP µ

n (− cos θ) = (−1)nωRP µ
n (cos θ),

{sin(µϕπ), Ψ
o
nµ}γ=π,θ = −(−1)µωRP µ

n (− cos θ) = −(−1)nωRP µ
n (cos θ)

}
(5.48)

and

Oe,tot
νµ [0, θ; π, θ] =

∑
n,ñ

(1 + (−1)ñ−µ)ω2RνµP ν
n (cos θ)(∆−1

ν )n,ñP
ν
ñ (cos θ)

sin2 θλñNnν

δνµ,

Oo,tot
νµ [0, θ; π, θ] =

∑
n,ñ

(1 − (−1)ñ−µ)ω2RνµP ν
n (cos θ)(∆−1

ν )n,ñP
ν
ñ (cos θ)

sin2 θλñNnν

δνµ

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.49)

with

∆ν,ñn =

{
δñn − δλn

λñ

π
∫ 1

−1
dx sign(x2 − cos2 θ)P ν

ñ (x)P ν
n (x)

Nnν

}
, (5.50)

which in the case Hs = 0 simplifies to

Oe,tot
νµ [0, θ; π, θ](Hs = 0) =

∑
n

(1 + (−1)n−µ)ω2RνµP ν
n (cos θ)2

sin2 θλnNnν

δνµ,

Oo,tot
νµ [0, θ; π, θ](Hs = 0) =

∑
n

(1 − (−1)n−µ)ω2RνµP ν
n (cos θ)2

sin2 θλnNnν

δνµ.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.51)

If both domains move relative to each other but perpendicular to their connecting
geodesics then the domain at the north pole will rotate around the vesicle centre
with velocity u⊥ = (ωrel,⊥/

√
2)ex × r such that ǔe

⊥,θ,1 = (ωrel,⊥/
√

2)R and ǔe
⊥,θ,ν = 0 for

ν = ± 2, ±3, . . . . Hence

τ̌rel,⊥,1 =
√

2τ̌⊥,1[0, θ] = ωrel,⊥(O−1
e,tot )11. (5.52)

Similarly, for a relative motion parallel to the interconnecting geodesics the domain at
the north pole will rotate around the vesicle centre with velocity u‖ = (ωrel,‖/

√
2)ey × r

such that ǔo
‖,θ,1 = (ωrel,‖/

√
2)R and ǔo

‖,θ,ν
= 0 for ν = ± 2, ±3, . . . . Hence

τ̌rel,‖,1 =
√

2τ̌‖,1[0, θ] = ωrel,‖(O−1
o,tot )11. (5.53)

The diffusion coefficient perpendicular to the geodesic connecting the domains is
different than along the geodesic and we find

1

f‖
= ηoR

3 sin θ
ωrel,‖

|τ̌rel,‖,1| =
ηoR

2 sin θ∣∣(O−1
o,tot )11

∣∣ ,
1

f⊥
= ηoR

3 sin θ
ωrel,⊥

|τ̌rel,⊥,1| =
ηoR

2 sin θ∣∣(O−1
e,tot )11

∣∣ .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.54)

For Hs = 0 and γ = π, (5.54) simplifies, and using (5.51) we regain (4.10). In general
several tasks outlined in the derivation in this section can only be performed
numerically. When there is contrast in surface shear viscosities the integrals
〈Ψñm̃χ(ϑ, ϕ)Ψnm〉 must be computed. And the matrix ∆ must be inverted numerically.
In case of two-domain rheology and γ �= π one additionally has to numerically
compute the integrals {cos(νϕγ ), Ψ e

nm}γ,θ and {sin(νϕγ ), Ψ o
nm}γ,θ and numerically must

invert the Oseen tensor O tot . We will compute the effect of viscosity contrast for only
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Figure 6. Dimensionless single-domain diffusion coefficient f −1 versus the conical domain
angle θ for Hs = 0 and different Boussinesq numbers B = 0–100. The grey area extends
over the region of possible single-domain diffusion coefficients where lower and upper
boundary represent, respectively, the diffusion coefficient of a rigid sphere and a non
viscous liquid disk in a non viscous flat membrane first derived by DeKoker equation
(5.42). Experimental single-domain diffusion coefficients are incorporated in the figure for
the compositions DOPC/DPPC/Chol= 16/64/20 (�), DOPC/DPPC/Chol= 40/40/20 (�),
and DOPC/DPPC/Chol= 35/35/30 (�). All data falls into the regime of negligible surface
shear viscosity (B < 1).

one domain rheology. For the two-domain rheology the computation time would
become quite long when considering arbitrary separations of the domains and a
contrast in viscosity.

6. Single-domain rheology: results
In figure 6 we plot f −1, i.e. the dimensionless single-domain diffusion coefficient

versus the conical angle θ of the domain edge at different Boussinesq numbers
for the case ηo = ηi and ηa

s = ηb
s . The diffusion coefficient is very sensitive to

the Boussinesq number for domains with small size. For large domains of size
comparable to the radius of the vesicle, however, the variation of the diffusion
coefficient with Boussinesq number is rather weak. Ultimately for large domains
we rediscover (5.40) and the domain diffuses together with the entire vesicle, and
the motion of the domain on the vesicle is locked to the rotation of the entire
vesicle. The diffusion coefficient is bounded by the relation 2/3π2 > f −1 > sin θ/8π
within the grey region in figure 6 where the boundaries are given by the diffusion
coefficient of De Koker (1996) corresponding to (5.42) and the rigid diffusion
coefficient corresponding to (5.40). Experimental single-domain diffusion coefficients
are incorporated in the figure for the compositions DOPC/DPPC/Chol = 16/64/20
(�), DOPC/DPPC/Chol = 40/40/20(�), and DOPC/DPPC/Chol = 35/35/30 (�) at
a temperature of T =23◦C. All data falls into the regime of negligible surface shear
viscosity (B < 1).

In figure 7 we plot the single-domain diffusion coefficient versus the Boussinesq
number for the case ηo = ηi and ηa

s = ηb
s . The diffusion first decreases with the

Boussinesq number but levels off when B > R/a, where the surface is so viscous that
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Figure 7. Dimensionless single-domain diffusion coefficient f −1 versus the Boussinesq
number for Hs = 0 and for different values of the conical domain angle θ .
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Figure 8. Dimensionless single-domain diffusion coefficient f −1 versus the surface shear
viscosity contrast Hs for Boussinesq number B = 0.01 (corresponding to fixed embedding
membrane surface shear viscosity) and different conical domain angles θ .

it behaves like a rigid sphere with a diffusion coefficient given by (5.40) independent
of the Boussinesq number. An increase of domain surface shear viscosity ηa

s at
constant embedding membrane viscosity ηb

s results in higher friction and thus lowers
the values of the diffusion constant. This can be seen in figure 8, where we plot
the dimensionless single-domain diffusion coefficient at a fixed surface shear viscosity
ηb

s of the embedding membrane against the surface shear viscosity contrast Hs .
When BHs sin θ ≈ 1 the diffusion coefficient decreases until it reaches a value
f −1

solid domain ≈ sin θ/8π that is lower than the diffusion coefficient of a liquid domain
but higher than that of a rigid surface. The cross-over from a liquid interface to
a partially rigid interface occurs when Max(ηa

s , η
b
s ) ≈ Rηo. The change in diffusion

constant is most pronounced for domains with intermediate size. Large domains
diffuse mainly via rigid rotation of the vesicle already at very small surface shear
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Figure 9. Sensitivity S of single-domain rheology versus Boussinesq number for different
conical domain angles θ .

viscosity. An increase in surface shear viscosity in the domain therefore will not affect
significantly the diffusion since it was already slow before the increase. For small
domains, most of the vesicle remains at a low viscosity and their diffusion would not
be affected by the high viscosity inside the small region of the domain. It is only for
the domains of intermediate size that substantial reduction in diffusion is achieved
by making the domain more viscous than the rest of the membrane. Intermediate
size domains diffuse faster than a rigid vesicle at low viscosity and zero contrast.
Increasing the surface shear viscosity of these domains makes a substantial fraction
of the vesicle very viscous such that substantial decreasing of the diffusion occurs.
Even a small domain when reaching a viscosity of ηa

s ≈ Rηo will start to feel the
friction from the opposite site of the vesicle and will result in a decrease of diffusion
coefficient substantially smaller than what is expected from a solid domain in a flat
membrane. This shows that the order of the limits ηa

s → ∞ and R → ∞ may not
be changed without obtaining different results. The basic result hence is that there is
a cross-over from surface viscosity dominated friction towards finite size friction at
roughly Max(ηa

s , η
b
s ) ≈ Rηo. The cross-over from surface viscosity dominated friction

towards finite size friction emerges in figure 9 as a peak in the sensitivity S versus
B for the single-domain rheology. This peak is located in the regime 1 < B < 1/ sin θ ,
while at low Boussinesq number (B < 1) and at high Boussinesq number B > 1/ sin θ

the sensitivity is negligible. Moreover, the peak in sensitivity increases as the conical
domain angle θ decreases. Since, at a fixed domain radius a and decreasing vesicle
radius R the conical domain angle θ increases, we conclude that a confinement of
domains to a small vesicle decreases the sensitivity and makes the measurement of
the surface shear viscosity more difficult. In figure 6 the scattering of the experimental
data that falls into the insensitive regime (B < 1) is much larger than systematic
variations of the surface shear viscosity with the structure of the phases.

7. Two-domain rheology: results
In § 4 we have shown that the relative diffusion of a domain measured with respect

to a reference domain on the same vesicle depends on the separation between the
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Figure 10. Dimensionless two-domain relative longitudinal diffusion coefficient f −1
rel,‖ versus

the conical domain angle θ for γ = π and different Boussinesq numbers B = 0–100.

domains and on the direction of the combined or relative motion. If one measures the
relative motion between two domains then one must use a theory which describes the
measured motion of one domain relative to the other domain. Choosing as reference
domain one which is not infinitely separated from the domain of measurement has
the draw back that the motions of the two domains are no longer uncorrelated.
One disadvantage is that hydrodynamic interactions between the domains could
give rise to a decrease of the relative diffusion of the domains as compared to
the diffusion of single domains. The relative motion of both domains comes to a
complete stop when both domains touch each other. To minimize the correlation
between the two domains, one has to increase their separation, and the best situation
will be when the two domains are located at opposite sides on the vesicle (γ = π),
which significantly simplifies the mathematics of the relative diffusion. We therefore
consider these hydrodynamic interactions for the case where one domain is located
at exactly the opposite side of the vesicle than the reference domain. Figure 10 shows
the relative longitudinal diffusion coefficient f −1

rel,‖ as a function of the conical domain

angle θ of the two domains for γ = π and for different values of the Boussinesq
number B. Keeping the Boussinesq number fixed and changing the conical angle
corresponds to decreasing the size of the vesicle at a fixed domain size and fixed
rheological properties. While for a single domain the variation of the friction with the
conical angle is weak, there is a pronounced dependence of the relative longitudinal
domain diffusion coefficient on the conical angle. The larger the conical angle θ or
the smaller the vesicle the more pronounced and the more correlated is the motion
of the two domains. Relative motion of the domains becomes increasingly difficult
and ultimately ceases when the vesicle is so small that both domains cover an entire
hemisphere. At γ = π, a domain with conical angle of 30◦ exhibits the same relative
diffusion coefficient than a small domain at a Boussinesq number that is one order
of magnitude larger than that of the large domain.

Figure 11 shows the diffusion coefficient f −1
rel,‖ as a function of the Boussinesq

number B. For B < 1 the diffusion coefficient f −1
rel,‖ is rather independent of the

Boussinesq number and hence at B < 1 the two-domain rheology is insusceptible to
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Figure 11. Dimensionless relative longitudinal diffusion coefficient f −1
rel,‖ of two domains

sitting at opposite sides of the vesicle versus the Boussinesq number for different conical
domain angles θ . The diffusion coefficient shows a strong dependence on the Boussinesq
number B for values B > 1 making the relative longitudinal diffusion mode sensitive to B.

the surface shear viscosity just as in the case of one domain rheology. At larger
Boussinesq numbers the diffusion coefficient f −1

rel,‖ of the longitudinal relative motion

rapidly decreases with increasing Boussinesq number B and two-domain rheology
becomes a sensitive rheological technique. Two-domain rheology is quite complex
when considering domains separated by an arbitrary angle γ . We distinguish four
modes of motion: ‘combined’ motion, where both domains move in the ‘same
direction along or perpendicular’ to their interconnecting geodesic and ‘relative’
motion where both domains move in ‘opposite directions’. It is important to note
that ‘relative’ and ‘combined’ motion is a term that makes sense with respect to
the interconnecting geodesic. If we consider the four modes and slowly separate the
domains until they reach opposite sides of the vesicle, ‘relative transversal’ motion
and ‘combined longitudinal’ motion become indistinguishable. The same is true for
‘relative longitudinal’ motion and ‘combined transversal’ motion. This can be seen in
figure 12, where we plot the diffusion coefficient f −1 versus the domain separation γ

for all four modes for a conical domain angle of θ = 30 deg and for vanishing contrasts
H =0 of the bulk and Hs =0 surface shear viscosities. All four modes have different
diffusion coefficients. For all Boussinesq numbers B and all separations γ relative
longitudinal diffusion has the lowest diffusion coefficient and combined longitudinal
motion has the highest. The diffusion coefficient of relative motion decreases with
decreasing separation angle γ . The diffusion coefficient of combined motion increases
with decreasing separation angle.

Combined transversal motion and combined longitudinal motion are fairly similar
at small separations. The reason for this becomes evident when considering a single
domain of twice the area of the two domains. If both domains would fuse to one
domain, combined transversal and combined longitudinal motion would merge to the
single-domain diffusion constant of a domain with conical angle θ = 42.9◦. The values
of those single-domain diffusion constants are shown at the left side of figure 12.
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Figure 12. Dimensionless two-domain diffusion constants of all four modes of diffusion versus
domain separation γ at three different Boussinesq numbers (B = 0, 1, 10) and for a conical
domain angle of both domains of θ = 30◦. To the left we show the corresponding single-domain
diffusion constants of a single domain having the same area as the two domains. To the right
we show the uncorrelated single-domain diffusion constant expected in a flat membrane. The
splitting of the combined modes at low separation is a result of shape anisotropy. The splitting
at maximum separation is a result of hydrodynamic correlations.

The splitting occurring between the combined modes at low separation is a result
of the shape anisotropy of the two domains as compared to a single domain of
similar area. Combined transversal and relative longitudinal motion become the same
when both domains are separated by the maximal separation of γ = π. The mode
reacting most sensitive to changes in the Boussinesq number B is the longitudinal
relative diffusion. Combined transversal motion shows the strongest sensitivity to
geometrical issues: While being rather insensitive to changes in Boussinesq number at
small separations combined transversal motion becomes more and more sensitive to
the Boussinesq number as the separation between both domains increases. Relative
transversal motion just shows the opposite behaviour. At large separations relative
transversal motion is slightly sensitive to changes in the Boussinesq number but its
sensitivity become more accentuated when the domain separations become small.
Both tendencies can be easily understood by considering that the transversal motions
take on the character of longitudinal motions when the separation angle approaches
γ = π. The difference in diffusion coefficients f −1

rel,‖ = f −1
comb,⊥ and f −1

rel,⊥ = f −1
comb,‖ at

γ = π shows that both domains are still correlated when being separated at maximum
distance. For a comparison we show the diffusion coefficient f −1

De Koker corresponding
to (5.42) that is expected in a flat membrane for infinite separation of the domains.
The splitting of the two pairs of modes is therefore a measure of the hydrodynamic
correlations persisting in a vesicle. The splitting between both diffusion coefficients is
minimal for small domains and low Boussinesq number. The splitting increases when
having larger domains or higher Boussinesq numbers. In the range B > 1/ sin θ , i.e.
the range where single-domain rheology is insensitive to the Boussinesq number, the
longitudinal relative diffusion is sensitive to the Boussinesq number. However the
longitudinal relative diffusion is strongly correlated in this regime. Separation of the
motion of two domains into the proper modes in a two-domain rheology is important
due to the different behaviour of these modes.
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Figure 13. Experimental relative longitudinal diffusion coefficient of domains f −1
rel,|| versus

the domain separation γ for a conical domain angle of θ ≈ 5 ± 1 deg for the
compositions DOPC/DPPC/Chol= 16/64/20 (�), DOPC/DPPC/Chol= 40/40/20 (�), and
DOPC/DPPC/Chol= 35/35/30 (�). Two theoretical curves with B = 0 and B = 1 are
incorporated for vanishing contrast H = 0 of the bulk and Hs = 0 surface shear viscosities.
The average experimental two-domain data suggest that the single-domain data are correct
and that surface viscous effects are negligible (B < 1).

Experimental two-domain diffusion data will usually be collected at varying
separations γ . In figure 13 we depict the experimental relative longitudinal diffusion
coefficient of domains f −1

rel,|| versus the domain separation γ for a conical domain

angle of θ ≈ 5◦ ± 1◦ for the compositions DOPC/DPPC/Chol = 16/64/20 (�),
DOPC/DPPC/Chol = 40/40/20(�), and DOPC/DPPC/Chol = 35/35/30 (�). Two
theoretical curves with B = 0 and B = 1 are incorporated for vanishing contrast
H =0 of the bulk and Hs = 0 surface shear viscosities. Although the scatter of
the data is large the average experimental two-domain data suggest that the single-
domain data are correct and supports the idea that B < ∞. Surface viscous effects are
negligible (B < 1) for the mixtures and surface shear viscosities in all phases are lower
than ηs < 10−9 Ns m−1. The scatter of the experimental data is more pronounced as
in single-domain rheology.

In contrast to single-domain rheology, two-domain rheology, specifically the
longitudinal relative diffusion becomes increasingly sensitive to the Boussinesq number
at high Boussinesq numbers. One might think that this would enable measurement
of high surface shear viscosities of the vesicle membrane using two-domain rheology.
However, in practice a vesicle of high viscosity will have a solid rotational diffusion
constant that is larger than the relative diffusion time by a factor given by the
Boussinesq number B. The two domains in the field of view of the microscope will
leave the field of view of the microscope with a rate defined by the solid rotational
diffusion constant. The typical change in separation of the two domains during

that limited time is of the order R
√

∆γ 2 = B−1/2R. Two domains of size 5 µm on
opposite sides on a vesicle of typical size R = 20 µm, and surface shear viscosity
ηs = 10−6 Ns m−1 will change their separation by 1 µm during the time available
for the observation. Similar domains separated by less than the maximal separation
will diffuse apart by less than 1 µm. Optical microscopy of resolution 1 micron
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Figure 14. Measurability M of one domain rheology (grey) and of the relative longitudinal
diffusion mode for two domains sitting at opposite sides of the vesicle (black) versus Boussinesq
number B for different conical domain angles θ . The shaded region indicates the region non
accessible by the experiments.

will therefore be useful for measurements of shear surface viscosities that are less
than ηs < 10−6 Ns m−1. In single-domain rheology, one does not have these resolution
requirements. A rheological technique capable of measuring the surface shear viscosity
must have both high resolution and high sensitivity. In figure 14 we therefore plot the
measurability M , (3.12) versus the Boussinesq number B for both one domain and
two-domain rheology. In the plot we assume a value of R2/�x2

min = 103. At similar
conical domain angles θ , the measurability of one domain rheology is about a factor of
1–10 larger than for two-domain rheology. If one wishes to measure the surface shear
viscosity, the one-domain rheology is superior to two-domain rheology. Two-domain
rheology on the other hand has the advantage of producing a more local measurement
of the surface shear viscosity, at the price of lower measurability. The variation of
the measurability with the Boussinesq number B and the conical domain angle θ is
rather similar for both techniques. Both techniques allow the measurement of surface
shear viscosities in a regime 1 < B < 1/ sin θ . Outside this regime measurements of
the surface shear viscosity should not be trusted. All diffusion data aquired for the
different mixtures in this paper fall into a range where only upper bounds for the
surface shear viscosity can be given.

It is obvious what to expect when using multi-domain rheology. Most likely the
measurability will suffer further decrease as the number of domains used for the
measurement is increased. Multi-domain rheology might however give a more local
measure of the surface shear viscosity and will be also mathematically more complex.
Tracking the motion of more domains on a vesicle hence will not improve the
problems occurring in the measurement of high surface shear viscosities. One way
to overcome the low measurability at high surface shear viscosities might be to
look at the coarsening kinetics of the domains. The vesicle can lower its domain
line tension energy via the coalescence of domains. At high surface shear viscosities
the coalescence of domains most likely will become diffusion limited. Observing
the statistics of coarsening as a function of time will not require following the
positions of individual domains such that the time of observation is no longer
limited by the rotational relaxation time �tmax <D−1

rot . Hence the high sensitivity of
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relative longitudinal diffusion together with a higher resolution achieved via long time
measurements will lead to a high measurability.

8. Discussion
Diffusion of domains within cell membranes is a difficult hydrodynamic problem.

Solutions to this problem must take into account the geometric constraints and the
mechanical and rheological properties of the constituents. Let us discuss the effects
of geometry first. We approximated the geometric shape of a vesicle by a sphere and
the domain as a circular segment which adheres to the sphere. Such approximation
holds if the viscous stresses at the vesicle membrane and at the domain edge are
small compared to the vesicle tension and the domain edge line tension. Fluorescence
microscopy images of vesicles containing ternary mixtures of lipids and cholesterol
(Veatch & Keller 2003; Cicuta et al. 2007) show that the shapes of vesicles and domain
edges can be spherical and circular, respectively. Based on this experimental evidence,
we neglect fluctuations of the shapes due to finite interfacial and line tension. Our
analysis of course does not apply close to the miscibility critical point, where domain
shapes undergo significant fluctuations and where the line tension between the phases
approaches to zero (Baumgart, Hess & Webb 2003). It also does not apply when the
bending rigidities of the domains are different from the bending rigidities of the rest
of the membrane such that domains bulge into the exterior liquid (Honerkamp-Smith
et al. 2008). We have shown that the single-domain rotational diffusion experimentally
observed in video microscopy of a domain on a vesicle is due to the diffusion of the
domain within the vesicle if the surface shear viscosity is small ηs � ηR. In vesicles
of typical size of 20 µm residing in an aqueous environment (η ≈ 10−3 Ns m−2) this
means that only if ηs � 2 × 10−8 Ns m−1 the domain can diffuse within the vesicle. Our
upper limit for the apparent single-domain translational diffusion constant is given by
De Koker’s result Dtrans <DDeKoker

trans = 2kBT /3π2ηoa. For large surface shear viscosities
ηs >> 2 × 10−8 Ns m−1 the diffusion of the domain will no longer be dominated
by diffusion within the membrane but by the solid rotational diffusion of the rigid
vesicle as a whole. The apparent translational diffusion coefficient associated with
such rigid rotational diffusion is D

rigid
trans = kBT /8πηoR. For a vesicle with radius 20 µm

in water the apparent single-domain translational diffusion coefficient of a domain
in a rigid vesicle is D

rigid
trans = 10−2 µm2 s−1. We have shown that the most reliable way

of measuring surface shear viscosities on vesicles with domain tracking is to use
single-domain rheology. In recent experiments of Cicuta et al. (2007) measurements
of the surface shear viscosity of vesicular membranes are reported using multi-
domain rheology. Cicuta et al. (2007) try to avoid the loss of sensitivity of single-
domain rheology at high Boussinesq numbers by subtracting average diffusion to
yield unbiased domain motion. No details are given how such average motion is
subtracted. On a curved surface, velocities of different domains are lying in different
tangent spaces to the different domains and therefore cannot be subtracted directly
since such relative velocities would have components moving the domain out of the
interface. Measurements of relative velocities in curved space are far from trivial.
The proper way to obtain relative velocities has been outlined in (4.1)–(4.5) and
corresponds to subtracting velocities of the reference domain only after parallel
transport (Misner et al. 1973) along the geodesic connecting the reference domain
to the domain of measurement. An analysis where one subtracts velocities from
several reference domains, of course is a form of multi-domain rheology that cannot
be interpreted correctly using single-domain rheological equations such as those of



Diffusion of domains on a vesicle 447

1

10–2

10–3

1

Experiments Clcuta et al. (2007)

1:4 DOPC:DPPC + 20 % Chol T = 35°
1:4 DOPC:DPPC + 20 % Chol T = 34°
1:4 DOPC:DPPC + 20 % Chol T = 18°
1:2 DOPC:DPPC + 30 % Chol T = 33°

Theory
Single domain

flat membrane ηs = 0 Hughes et al. (1981)

Two domains in a vesicle
Relative longitudinal mode

γ = 180°, ηs = 0
γ = 2.2 θ, ηs = 0

γ = 3 θ, ηs = 7 × 10–9 Ns m–1

on a vesicle ηs = 0 

10

10–1
D

if
fu

si
on

 c
on

st
an

t D
 (

µ
m

2  
s–1

)

Domain radius a (µm)

Figure 15. Comparison of single-domain and relative longitudinal translational diffusion with
experimental data from Cicuta et al. (2007) for a vesicle of radius R = 20 µm, bulk viscosity of
η = 10−3 Ns m−2, temperature T = 300 K, and vanishing bulk and surface viscosity contrasts
H = Hs = 0. The grey region indicates the regime where relative longitudinal diffusion can
be explained by different separations γ of the domains without the need of a surface shear
viscosity. Below the grey area the surface shear viscosity becomes measurable and we show a
fit (short dotted line) with γ = 3θ and ηs = 7 × 10−9 Ns m−1 to the 1:4 DOPC:DPPC+ 20 %
cholesterol data at T = 18◦C. Experimental data above the grey area most likely contain
contributions from the other three two-domain diffusion modes. The solid and dashed line
shows the theoretical predictions for a single domain in a flat membrane and on a vesicle.

Saffmann & Delbrück (1975) or such as those of Hughes et al. (1981). No distinction
of modes has been made by Cicuta et al. (2007) when analysing their data. However,
we might expect that subtracting average velocities will largely eliminate contributions
from the three modes that contain solid rotations of the entire vesicle. One might hope
that their measurements will catch the motion of the relative longitudinal mode to the
neighbouring domain lying along the direction of momentary motion. Fluorescence
images of the vesicles investigated by Cicuta et al. (2007) suggest that the density
of domains is quite high such that there are always neighbouring domains in the
way of motion. In figure 15 we plot the single-domain and relative longitudinal
two-domain translational diffusion constants versus domain size a for a vesicle of
radius R =20 µm under several different geometrical situations. The single-domain
translational diffusion constant DHughes = kBT /16 ηa for non viscous flat membrane
and the single-domain translational diffusion constant on a vesicle Dvesicle

single have the
largest diffusion constant. The relative longitudinal two-domain translational diffusion
constant in a non-viscous vesicle at maximum separation of both domains is almost a
factor of two smaller than the single-domain diffusion. All experimental two-domain
rheology data having properly subtracted relative motion between the two domains
should lie below this line. We incorporate experimental data from Cicuta et al. (2007)
into our graph and some of these data (the 1:2 DOPC:DPPC+ 30 % cholesterol
mixture at T = 33◦C) lie above this line indicating that subtracting the motion of more
than one reference domain might not properly project onto the relative longitudinal
mode of two domains. Relative longitudinal diffusion depends on the separation of
the two domains. In figure 15 we have plotted the largest possible value of relative
longitudinal translational diffusion occurring for a separation of γ = π and vanishing
surface shear viscosity ηs = 0. Additionally, we plot the lowest relative longitudinal
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translational diffusion constant possible for zero surface shear viscosity ηs = 0 if one
discards domains that are too close γ < 2.2θ . The grey region between this two lines
hence is a region where experimentally observed diffusion constants may be explained
by pure geometry without any surface shear viscosity ηs = 0. Most of the data of
Cicuta et al. (2007) falls into this regime. The translational diffusion constants of the
1:4 DOPC:DPPC+ 20 % cholesterol mixture at T = 35◦C can be explained equally
well with ηs =0 and γ = 5θ as with ηs = 3 × 10−9 Ns m−1 and γ = π. Experimental
data falling below the grey region cannot be explained with vanishing surface shear
viscosity. Cicuta et al. (2007) data for the 1:4 DOPC/DPPC mixture with 20 %
cholesterol at 18◦C and 34◦C falls below the grey region. In our measurements the
slowest mode of diffusion is the longitudinal relative diffusion. We could not confirm
the experimental values measured by Cicuta et al. (2007). In order to get a figure
of merit about the surface shear viscosity their data would imply we fitted the data
of Cicuta et al. (2007) assuming a separation between the domains of γ ≈ 3θ that
approximately corresponds to the fluorescence images presented with their data.

We found that their data for the 1:4 DOPC/DPPC mixture with 20 % cholesterol
at 18◦C is well fitted with the relative longitudinal mode when using a viscosity of
ηs = 7 × 10−9 Ns m−1. This viscosity is almost three orders of magnitude smaller than
when fitting the same data with Saffmann & Delbrück (1975) (ηs = 4 × 10−6 Ns m−1)
showing that hydrodynamic interactions between domains cannot be neglected.
Translational diffusion constants of lipids in mixtures of phospholipids and cholesterol
measured with fluorescence correlation spectroscopy (Kahya & Schwille 2006) and
diffusion nuclear magnetic resonance (NMR) (Filippov, Orädd & Lindblom 2004)
report values of 0.1 × 10−8 cm2 s−1 <Dlipid < 20 × 10−8 cm2 s−1. If we assume that those
lipids diffuse as individuals without forming larger complexes, neglect the non-
continuous structure of the membrane on the molecular scale, we may fit those
single-lipid translational diffusion constants using Saffmann & Delbrück (1975). We
assume a hydrodynamic membrane radius of the lipid is of the order of 5 Å. Under
these circumstances the lipid diffusion constants correspond to surface viscosities of
3 × 10−8 Ns m−1 > ηs > 1 × 10−10 Ns m−1, which is consistent with our experimental
data and with our interpretation of the domain diffusion but inconsistent with using
Saffmann & Delbrück (1975) for the domain diffusion and inconsistent with the
experimental data of Cicuta et al. (2007). If the lipids do not diffuse as individuals
but in the form of larger complexes, the surface shear viscosity extracted from the
lipid diffusion data will be somewhat lower than when assuming individual diffusion.
Moreover our value of the surface shear viscosity corresponds to a Boussinesq number
slightly smaller than unity B ≈ 1, which is just below the regime of good measurability
of the technique. The lever rule states that properties like the surface shear viscosity
of the coexisting phases should not vary with the area fraction each phase occupies.
The data of Cicuta et al. (2007) varies with the area fraction and violates the lever
rule. In our measurements surface shear viscosities are negligible and there is no
violation of the lever rule.

Our experimental data, our analysis of the data and our interpretation of the
experiments therefore differ from Cicuta et al. (2007). Diffusion constants of the
slowest mode are larger than diffusion constants of Cicuta et al. (2007). Most
of the reduction in diffusion constant on the vesicle is an effect of a decreasing
separation γ of the domains. The diffusion is mainly affected by the hydrodynamic
interactions mediated primarily via the bulk fluid, and surface shear viscosity of the
membranous phases are at least three orders of magnitude smaller than anticipated by
Cicuta et al. (2007).
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So far, we have neglected the contrast in surface shear viscosity in our discussion. In
the limit of vanishing surface shear viscosity the diffusion constant of a liquid domain
is larger by a factor of 32/3π2 = 1.08 than that of a solid domain. Deviations of the
result of De Koker (1996) from the results of Hughes et al. (1981) are limited to 15 %
over the entire range of surface shear viscosities. The curvature of the vesicle does not
change these effects if one discards the domains of intermediate size. Hence the approx-
imation to use the same surface shear viscosity for the domain and the majority phase
of the membrane for vesicular phases of small surface shear viscosity is believed to lead
to errors not exceeding 15 %. Given the uncertainties in conditions in the experimental
data these deviations from (3.9) appear to be of minor impact to the numerical values
extracted from the data. The theory derived here is for one and two domains diffusing
in a homogeneous membrane. In experiments there usually are several domains on
a vesicle. We might consider the suspension of domains in the vesicle as an effective
medium with an effective surface shear viscosity. However, once one of the surface
shear viscosities results in a viscous length scale of the order of the typical geometric
extensions of the system, the diffusing domain will sense and react in its diffusion to
all geometrical details within that range. Our measurements (not shown) indicate that
the presence of other domains suppresses relative transversal diffusion in a way, such
that relative transversal diffusion becomes comparably slow to relative longitudinal
diffusion. This in turn might be used to detect length scales of the S0 phase domains
in the three phase coexistence region S0, Lα, L0. Great care needs to be taken if one
wants to extract rheological properties of one of the constituents of such a system.

9. Conclusions
Single-domain rheology and two-domain rheology on a vesicle are two ways to

measure the surface shear viscosity of membranes in a vesicle. The ratio of surface
to bulk viscosities defines a viscous length scale. Only when the viscous length scale
falls between the size of the domain and the size of the vesicles, can a surface shear
viscosity be measured easily. To achieve a high measurability of the surface shear
viscosity the diffusion must be sensitive to the surface viscosity and must be resolved.
We demonstrate that the best domain-tracking method to resolve the surface shear
viscosity is the single-domain rheology. Different modes of diffusion in two- or
multi-domain rheology have different sensitivity and resolution. A domain rheology
measurement should decompose the motion of the domains into normal modes
of diffusion. The decomposition is important because hydrodynamic interactions
between domains confined to the same vesicle reduce the relative longitudinal
diffusion constant stronger than the other modes of diffusion. This makes the relative
longitudinal mode more sensitive to the surface shear viscosity than other modes
of diffusion. The gain in sensitivity is achieved by a loss of resolution and does not
increase the range where surface shear viscosities can be measured. Our experiments
on vesicle do not confirm the diffusion constants measured in experiments of Cicuta
et al. (2007). Our interpretation suggests that the observed reduction in diffusion
constants is mainly due to hydrodynamic interactions mediated by the water and only
a minor contribution is due to the viscous membrane. Our experimental diffusion
constants correspond to surface shear viscosities that differ by at least three orders
of magnitude from those extracted by Cicuta et al. (2007). The diffusion of domains
in vesicles depends on all geometrical details in the surrounding of the domain that
are within the range of the viscous length scale. Thus our work will help and inspire
experiments on the diffusion of domains on spherical surfaces.
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